S.C Department of Natural Resources # LiDAR Campaign (Bamberg County, SC) Report of Survey 2011 #### **EXECUTIVE SUMMARY** S.C. Department of Natural Resources contracted with Sanborn to provide LiDAR mapping services for Bamberg County. Utilizing multi-return systems, Light Detection and Ranging (LiDAR) data in the form of 3-dimensional positions of a dense set of mass points was collected for approximately 395 square miles between March 15, 2010 and March 20, 2010. All systems consist of geodetic GPS positioning, orientation derived from high-end inertial sensors and high-accurate lasers. The sensor is attached to the aircraft's underside and emits rapid pulses of light that are used to determine distances between the plane and terrain below. Specifically, the Optech ALTM3100EA LiDAR system was used to collect data for the survey campaign. The LiDAR system is calibrated by conducting flight passes over a known ground surface before and after each LiDAR mission. During final data processing, the calibration parameters are inserted into post-processing software. Two airborne GPS (Global Positioning System) base stations were used in the Bamberg County project. A new point, point 99N, was created near the intersection of Church Street and State Road S-5-54. The other base station, 99NEast, was set up at the intersection of Priester Lake Road, and State Road S-5-81. These two base stations were tied to each other to create a GPS survey network. The coordinates of these stations were checked against each other with the three dimensional GPS baseline created at the airborne support set up and determined to be within project specifications. The acquired LiDAR data was processed to obtain first and last return point data. The last return data was further filtered to yield a LiDAR surface representing the bare earth. #### **CONTENTS** | 1.0 | INTRODUCTION | 4 | |-------|---|--------| | 1.1 | CONTACT INFORMATION | | | 1.2 | PURPOSE OF THE LIDAR ACQUISITION | | | 1.3 | PROJECT LOCATION | 4
- | | 1.4 | STANDARD SPECIFICATIONS FOR LIDAR | 5 | | 2.0 | LIDAR CALIBRATION | 6 | | 2.1 | Introduction | 6 | | 2.2 | CALIBRATION PROCEDURES | 6 | | 3.0 | LIDAR FLIGHT AND SYSTEM REPORT | 7 | | 3.1 | Introduction | 7 | | 3.2 | FIELD WORK PROCEDURES | | | 3.3 | FINAL LIDAR PROCESSING | 8 | | 4.0 | GEODETIC AUTHENTICATION | 9 | | 4.1 | FINAL LIDAR VERIFICATION | 9 | | 5.0 | COORDINATES AND DATUM | 10 | | 5.1 | Introduction | 11 | | 5.2 | HORIZONTAL DATUM | 11 | | 5.3 | VERTICAL DATUM | 11 | | | LIST OF TABLES | | | Tarie | 1: LiDAR Specifications | 5 | | | 2: LIDAR ACQUISITION PARAMETERS. | | | | 3: COLLECTION DATES, TIMES, AVERAGE PER FLIGHT COLLECTION PARAMETERS AND PDOP | | | TABLE | 4: PROCESSING ACCURACIES AND REQUIREMENTS | 8 | | TABLE | 5: LIDAR ACCURACY ASSESSMENT BASED ON THE CHECKPOINT SURVEY (FEET) | 10 | | | LIST OF FIGURES | | | Figur | E 1: AREA OF COLLECTION | 4 | | | E 2: TERRAMATCH TILING SAMPLE | | | FIGUR | E 3: BAMBERG SURVEY CHECKPOINT DIAGRAM | 9 | #### 1.0 INTRODUCTION This document contains the technical write-up of the LiDAR campaign, including standard specifications, system calibration techniques, field procedures, and the accuracy of the LiDAR data. #### 1.1 Contact Information Questions regarding the technical aspects of this report should be addressed to: Shawn Benham, PMP Project Manager Sanborn Map Co., Inc. 1935 Jamboree Dr. Suite 100 Colorado Springs Co 80920 719-502-1296 (Desk) sbenham@sanborn.com ## 1.2 Purpose of the LiDAR Acquisition As stated in the Statement of Work for Acquisition and Production of High Resolution Elevation data for the SCDNR 2010 project, this LiDAR operation was designed to create high resolution data sets that will establish an authoritative source for elevation information for Bamberg County. ## 1.3 Project Location Figure 1: Area of Collection ## 1.4 Standard Specifications for LiDAR ## **Table 1: LiDAR Specifications** | | Data Acquisition | | |--------------------------------------|---|-----| | Requirement | Description | | | Returns per
pulse | LiDAR sensor shall be capable of recording up to 3 (or more) returns per pulse, including 1st and last returns | | | Scan angle | ≤ ±24 degrees | * | | Swath overlap | Nominal sidelap on adjoining swaths, i.e., survey shall be designed for 50% overlap coverage at planned aircraft height above ground | 50% | | Design pulse
density
(nominal) | Pulses/m2 (includes swath overlap; e.g., with 30% sidelap, ≥ 2 pulse/m2 in each swath) | ≥1 | | GPS
procedures | At least 2 GPS reference stations in operation during all missions, sampling positions at 1 Hz or higher frequently. Differential GPS baseline lengths shall not exceed 30 km. Differential GPS unit in aircraft shall sample position at 2 Hz or higher. LiDAR data shall only be acquired when GPS PDOP is ≤ 3.5 and at least 6 satellites are in view. | * | | Data Collection
Season | Target window for collection of LiDAR data ends Spring of 2010. This may be extended with approval by State program managers | * | | Survey
conditions | Leaf-off and no significant snow cover, as observed by state contract representatives. | * | | | Geographic Coverage and Continuity | | | Coverage | No voids between swaths. No voids because of cloud cover or instrument failure. | | | Swath overlap | ≤ 50% no-overlap area per project. | | #### 2.0 LIDAR CALIBRATION #### 2.1 Introduction LiDAR calibrations are performed to determine and therefore eliminate systematic biases that occur within the hardware of the Optech ALTM3100EA system. Once the biases are determined they can be modeled out. The systematic biases are corrected for include scale, roll, and pitch. The following procedures are intended to prevent operational errors in the field and office work, and are designed to detect inconsistencies. The emphasis is not only on the quality control (QC) aspects, but also on the documentation, i.e., on the quality assurance (QA). #### 2.2 Calibration Procedures When Sanborn receives raw point cloud data from its subcontractors, calibration proceedures using TerraSolid products are applied; inleuding TerraScan and TerraMatch. Utilizing these two tools, Sanborn is able to correct each intiviual raw data strip to precisely match the two overlapping swaths. In return, the RMSE of the enitre project is substantually lower, resulting in a more accurate dataset. TerraMatch samples the data perpenicular to the flight pattern to assess and correct for roll errors, pitch errors, and heading errors. Throughout the Bamberg County project, flight direction consisted of a southwest to northeast flight pattern. Rows of small sample tiles were placed perpendicular to the raw strips, and populated with the raw point cloud data. Once the population of the data is complete, a filter is applied to each sample tile. The filter classifies bare earth and building rooftops per flight line in order for TerraMatch to recognize the individual strips and their features, allowing the software to find corrections for roll, pitch, and heading throughout the project. Once the adjustments are calculated, the settings are applied to the final delivery tiles. Figure 2: TerraMatch Tiling Sample #### 3.0 LIDAR FLIGHT AND SYSTEM REPORT #### 3.1 Introduction This section addresses LiDAR system, flight reporting and data acquisition methodology used during the collection of the Bamberg county campaign. Although LMSI conducts all LiDAR with the same rigorous and strict procedures and processes, all LiDAR collections are unique. #### 3.2 Field Work Procedures A minimum of two GPS base stations were set for the Bamberg County project, which is within the project area or within the required baseline specifications of the project. Pre-flight checks such as cleaning the sensor head glass are performed. A four minute INS initialization is conducted on the ground, with the engines running, prior to flight, to establish fine-alignment of the INS. GPS ambiguities are resolved by flying within ten kilometers of the base stations. The flight missions were typically four or five hours in duration including runway calibration flights flown at the beginning and the end of each mission. During the data collection, the operator recorded information on log sheets which includes weather conditions, LiDAR operation parameters, and flight line statistics. Near the end of the mission GPS ambiguities are again resolved by flying within ten kilometers of the base stations, to aid in post-processing. Table 2 shows the planned LiDAR acquisition parameters with a flying height of 1520 meters above ground level (AGL) for the Optech system on a mission to mission basis. Average Altitude 1520 Meters AGL Airspeed ~150 mph Scan Frequency 29 Hertz Scan Width Half Angle 24 Degrees Pulse Rate 70,000 Hertz **Table 2: LiDAR Acquisition Parameters** Preliminary data processing was performed in the field immediately following the missions for quality control of GPS data and to ensure sufficient overlap between flight lines. Any problematic data could then be re-flown immediately as required. Final data processing was completed in the Colorado Springs office. Table 3: Collection Dates, Times, Average Per Flight Collection Parameters and PDOP | Mission | Date | Sensor | Start | End | Altitude | Airspeed | Scan | Scan | Pulse | PDOP | |---------|--------|--------|-------|-------|----------|----------|-------|------|-------|------| | | | | Time | Time | (m) | (Knots) | Angle | Rate | Rate | | | 074 | Mar 15 | Optech | 13:38 | 15:20 | 1520 | 130 | 44° | 29 | 70000 | 2.6 | | 074 | Mar 15 | Optech | 19:46 | 00:35 | 1520 | 130 | 44° | 29 | 70000 | 2.0 | | 077 | Mar 18 | Optech | 21:32 | 00:47 | 1520 | 130 | 44° | 29 | 70000 | 2.3 | | 078 | Mar 19 | Optech | 11:02 | 14:11 | 1520 | 130 | 44° | 29 | 70000 | 1.9 | | 078 | Mar 19 | Optech | 18:16 | 23:28 | 1520 | 130 | 44° | 29 | 70000 | 2.5 | | 079 | Mar 20 | Optech | 17:42 | 21:56 | 1520 | 130 | 44° | 29 | 70000 | 2.7 | ## 3.3 Final LiDAR Processing LiDAR filtering was accomplished using TerraSolid, TerraScan LiDAR processing and modeling software. The filtering process reclassifies all the data into classes with in the LAS formatted file based scheme set using the LAS format 1.2 specifications or by the client. Once the data is classified, the entire data set is reviewed and manually edited for anomalies that are outside the required guidelines of the product specification or contract guidelines, whichever apply. Table 4 indicates the required product specifications. The coordinate and datum transformations are then applied to the data set to reflect the required deliverable projection, coordinate and datum systems as provided in the contract. The client required deliverables are then generated. At this time, a final QC process is undertaken to validate all deliverables for the project. Prior to release of data for delivery, Sanborn's quality control/quality assurance department reviews the data and then releases it for delivery. **Table 4: Processing Accuracies and Requirements** | Accuracy of LiDAR Data (H) | 1m RMSE | |--------------------------------------|------------| | Accuracy of LiDAR data in bare areas | 15 cm RMSE | ### 4.0 GEODETIC AUTHENTICATION #### 4.1 Final LiDAR Verification The LiDAR data was evaluated using a collection of 10 NGS benchmarks; see figure 7 for diagram. For Bamberg County, the standard deviation is 0.399 feet and the root mean squared is 0.387 feet. The LiDAR data was compared to each of these benchmarks yielding much better result than was required for the project. Table 7 indicates the results for Bamberg County and each point including the overall results as it compares to the LiDAR data set. Figure 3: Bamberg Survey Checkpoint Diagram Table 5: LiDAR Accuracy Assessment based on the Checkpoint Survey (Feet) | Name | Vegetation
Class | Easting | Northing | Known Z | Laser Z | Dz | |--------|---------------------|-------------|------------|---------|---------|--------| | AB1939 | Bare Earth | 1979890.970 | 461781.140 | 150.721 | 150.170 | -0.551 | | DE3235 | Bare Earth | 1967592.050 | 536120.380 | 222.000 | 222.680 | +0.680 | | DE3236 | Bare Earth | 1965999.610 | 534449.100 | 210.000 | 210.360 | +0.360 | | DE3244 | Bare Earth | 1970038.370 | 476666.440 | 161.765 | 161.530 | -0.235 | | DE3249 | Bare Earth | 1971617.580 | 448267.720 | 123.600 | 123.460 | -0.140 | | DE2558 | Bare Earth | 1998988.300 | 515635.240 | 146.736 | 146.980 | +0.244 | | DE3251 | Bare Earth | 1940145.180 | 512281.570 | 217.000 | 217.090 | +0.090 | | DF8530 | Bare Earth | 2060274.910 | 488398.750 | 111.800 | 111.480 | -0.320 | | DE0601 | Bare Earth | 1939745.100 | 477832.200 | 132.083 | 132.190 | +0.107 | | DE3259 | Bare Earth | 1946462.150 | 501313.470 | 238.920 | 239.510 | +0.590 | | А | verage dz | +0.083 | | | | | | N | linimum dz | -0.551 | | | | | | M | aximum dz | +0.680 | | | | | | Avera | age Magnitude | 0.332 | | | | | | Root | Mean Square | 0.387 | | | | | | St | d deviation | 0.399 | | | | | #### 5.0 COORDINATES AND DATUM #### 5.1 Introduction The final adjustment was constrained to the published NAD83 geodetic coordinates (ϕ , λ) and NAVD88 elevations. The adjustment was cross-referenced to the GEOID03 model to enable the estimation of orthometric heights. #### 5.2 Horizontal Datum The final horizontal coordinates are provided in State Plane HARN South Carolina FIPS 3900 on the North American Datum of 1983 (NAD83 adjustment of 1992) units of intl feet. #### 5.3 Vertical Datum The final orthometric elevations were determined for all points in the network using Geoid03 model and are provided on the North American Vertical Datum of 1988 in units of survey feet.